Live Archive System

Jason Hyon

Jet Propulsion Laboratory, California Institute of Technology Jason.hyon@jpl.nasa.gov

Trends

- Space Sciences are confronted with overwhelming volume of data
 - Granularity of registered observations
 - Modeling based on High performance computing
 - Data On-demand via network
- Inexpensive emerging storage technologies, combined with the availability of high-speed communications will offer the infrastructure for extremely large data repositories to be accessible on-line.

Challenge

- Rising volume of data that needs to be safely distributed and archived
- Current technologies of CD and DVD no longer viable solutions
- Magnetic media are not viable
- Higher capacity media must be found
- An alternative should exist

NASA Standards for Media

- The National Archives and Records Administration (NARA) and the National Institute of Standards and Technologies (NIST) determine the suitability of media for archiving.
- They only publish that which has proven to be reliable which is a long-term process.
 - For example, the acceptance of CD-ROM took around 10 years.

A Guideline for Archive Media

- Must use an open standard (UDF/ISO 9660)
- Should have multiple vendors of hardware and media
- Must carry directory information
- Must employ robust error correction with graceful degradation
- Must provide the capability for easy migration to higher capacity media
- Should have some organization monitoring industry performance

Status of Current Archive Technology

- There is no cost-effective archive solution
 - Size is limited and cost is high
 - Data transfer rate is slow
 - It needs special environment
- A concept of "live" media
 - Compatible physical format for next 5 10 years(upward compatible)
 - Compatible logical format for next 5 10 years (ISO/de facto)
 - Migration path is well defined

Our Approach

- Factors
 - Archive storage technology tends to lag 5 years compared to real-time storage technology.
 - There tend to be two separate systems for data processing and distribution.
- A combination of the two systems will be cost effective and efficient.
 - State-of-the-art storage technology
 - Longevity

Live Archive System

- We have developed a storage architecture that addresses:
 - Hardware Architecture
 - Software Architecture
 - Operations and Processes
 - Hardware Technology
 - Storage Area Management Software
 - Technology Migration
- Based on Open Archive Information System (OAIS)
 - http://www.ccsds.org/documents/pdf/CCSDS-650.0-B-1.pdf
- To combine data processing, distribution, and archiving systems for a single efficient data storage for all purpose

A Typical Ground Data System

SeaWinds Standard Products and Metadata

Hardware Architecture

- Infrastructure to interface hardware components and to modify existing components seamlessly
 - On-line, Near on-line, Off-line, Bankup system, Order system
- Interface Specifications
 - SCSI, FC, TCP/IP, Net Apps, Security
- Must support the OAIS model

Fig. 5 Physical Storage Abstraction

Fig. 6 Live Mission System(LMS) Architecture

Operations and Processes

Fig. 1 OAIS Functional Model

Fig. 4 Science Date Processing Levels

Hardware Technology

- Synchronous Mirroring: SCSI/FC
- Asynchronous Mirroring or Replication: SCSI/FC
- Snapshot Data Protection: ATA disk
- Backup: Tape
- Archiving: CD/DVD
- Distribution: CD/DVD/Tape/Internet

Storage Area Network Management

- System Administration
- Realtime and Archival data processing
- Media migration server
- Backup server

Conclusion

- Flexible hardware and software architecture with rigorous system administration process
- OAIS Model

Will provide a combined system to support both real-time needs and archival needs to enable efficient data storage systems.